BBA 41322

LIGHT-DEPENDENT REDUCTION OF HYDROGEN PEROXIDE BY INTACT SPINACH CHLOROPLASTS

J.W. ANDERSON *, CHRISTINE H. FOYER and D.A. WALKER

ARC Research Group on Photosynthesis, Department of Botany, University of Sheffield, Sheffield S10 2TN (U.K.)

(Received February 14th, 1983)

Key words: Hydrogen peroxide reduction; Oxygen evolution; Glutathione metabolism; Ascorbate metabolism; Catalase; (Spinach chloroplast)

Intact spinach chloroplasts, washed four times in buffered sorbitol to decrease catalase contamination, supported O_2 evolution in the dark at very low rates (less than 2 μ mol/mg Chl per h) in the presence of low concentrations of H_2O_2 (0.25 mM); H_2O_2 was not significantly metabolised under these conditions. In the light, washed chloroplasts supported H_2O_2 -dependent O_2 evolution at rates of 28–46 μ mol/mg Chl per h in the presence of 0.1–0.25 mM H_2O_2 ; the concentration of H_2O_2 supporting 0.5 V_{max} was estimated to be 25 μ M. O_2 evolution in the light was associated with H_2O_2 consumption and ceased after the production of 0.45 mol per mol H_2O_2 consumed. Both O_2 evolution and H_2O_2 consumption were abolished by 5 μ M 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Washed intact chloroplasts contained endogenous pools of GSH and ascorbate estimated at 10 and 33 mM, respectively. H_2O_2 -dependent O_2 evolution in the light was associated with a decrease in these levels which increased as O_2 evolution gradually ceased. The results are consistent with the hypothesis that H_2O serves as eventual electron donor for the reduction of H_2O_2 in illuminated chloroplasts and that GSH/GSSG and ascorbate/dehydroascorbate serve as intermediate electron carriers. Preincubation of chloroplasts in the dark with 0.1 mM H_2O_2 abolished O_2 evolution in the light.

Introduction

Illuminated chloroplasts support the reduction of O_2 to H_2O_2 utilizing reducing equivalents emanating from Photosystem I [1-3]. H_2O_2 is a potent inhibitor of chloroplast metabolism [4] at micromolar concentrations [5]. Current evidence suggests that glutathione peroxidase, which provides an important mechanism for the reduction of low concentrations of H_2O_2 in animals [6], is not associated with plants [7,8] and it has been pro-

Abbreviations: Chl, chlorophyll; DCMU, 3-(3,4-dichlorophenyl)-1,1-dimethylurea; Hepes, 4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid.

posed that in chloroplasts NADPH could serve as electron donor via the sequence NADPH → GSSG/GSH → dehydroascorbate/ascorbate \rightarrow H₂O₂/H₂O [9]. The enzymes catalyzing the component reactions of this sequence are associated with chloroplasts [9-11] and, in illuminated ruptured chloroplasts, H₂O can serve as eventual electron donor for the sequential reduction of exogenous GSSG, dehydroascorbate and H₂O₂ with the concomitant evolution of O₂ [10-13]. Since intact chloroplasts contain endogenous pools of ascorbate [14] and GSH [9] and the chloroplast envelope is presumably permeable to H₂O₂ then, according to theory, the metabolism of exogenous H₂O₂ by intact chloroplasts should exhibit characteristics consistent with the properties of the pathway. Here we report that intact washed chlo-

Permanent address: Botany Department, La Trobe University, Bundoora, Victoria 3083, Australia.
 Abbreviations: Chl, chlorophyll; DCMU, 3-(3,4-dichloro-

roplasts support the reduction of exogenous H_2O_2 with the concomitant evolution of O_2 in the light, but not in the dark, and that the perturbations of the endogenous pools of GSH and ascorbate are consistent with the light-dependent transfer of reducing equivalents from H_2O to H_2O_2 via these substrates.

Materials and Methods

Intact unwashed chloroplasts were prepared from spinach (Spinacia oleracea cv Yates Hybrid 102) ad described in Ref. 15 except that ascorbate was omitted from the extracting medium. After washing the surface of the chloroplast pellet [15] the chloroplasts were resuspended in 50 ml of 0.33 M sorbitol adjusted to pH 7 with 10 mM Hepes-KOH buffer and recentrifuged. The latter procedure was repeated a further three times to decrease catalase contamination. All reactions were conducted in medium containing 0.33 M sorbitol, 2 mM MgCl₂, 2 mM MnCl₂, 4 mM EDTA, 100 mM Hepes-KOH buffer, pH 7.6, washed chloroplasts (100 µg Chl/ml) and 10 mM DLglyceraldehyde to inhibit endogenous CO₂-dependent O2 evolution [16]. Incubations were performed in red light (300 W \cdot m⁻²) at 20°C in O₂ electrodes [17] supplied by Hansatech, King's Lynn, U.K. (Light plus H₂O₂)-dependent O₂ evolution was initiated with H_2O_2 (0.1–0.25 mM); the concentration of H₂O₂ supplied was determined polarographically by O₂ evolution in the presence of catalase (220 U/ml). Catalase activity associated with chloroplast preparations was also determined by O_2 evolution using 2.5 mM H_2O_2 as substrate in the dark; all other conditions were as described for (light plus H_2O_2)-dependent O_2 evolution. Catalase activity was corrected for O₂ evolution in the presence of 0.1 mM NaN₃ and is expressed as azide-sensitive activity.

GSH, ascorbate, chlorophyll and chloroplast intactness were determined as described in Refs. 18, 14, 19 and 20, respectively.

Results

Unwashed chloroplasts were heavily contaminated with catalase as determined by azidesensitive O_2 evolution in the dark in the presence

of 2.5 mM H₂O₂ but this was decreased approx. 20-fold by four washes with buffered sorbitol (pH) 7) (Table I). Nevertheless, chloroplasts washed four times contained significant catalase activity (16 μmol/mg Chl per h for the experiment shown in Table I) when determined by the above procedure. Catalase, however, has a low affinity for H_2O_2 [21]. At 0.2 mM H_2O_2 , the rate of O_2 evolution catalysed by washed chloroplasts in the dark was negligible (Fig. 1, trace B). By contrast, illuminated washed chloroplasts in the presence of 0.2 mM H₂O₂ supported O₂ evolution at rates of 28-46 μ mol/mg Chl per h (Fig. 1, trace A). O₂ evolution in the light ceased after the production of 0.45 mol O_2 per mol H_2O_2 supplied. The rate of O_2 evolution was constant until approx. 50% of this value was attained, thus implying that the light-dependent reaction, unlike catalase [21], had a relatively high affinity for H₂O₂. A further addition of 0.2 mM H₂O₂ to illuminated chloroplasts reinitiated the sequence described above although the rate of O₂ evolution invariably attained only 61-71% of the rate associated with the first addition of H₂O₂ (Fig. 1, trace A). Addition of exogenous catalase after cessation of O₂ evolution did not reinitiate O₂ evolution, indicating complete removal of H2O2 in the light. Whereas a second application of 0.2 mM H₂O₂ slightly enhanced light-independent O₂ evolution, caused by endogenous catalase activity, the large amount of O₂ released on addition of exogenous catalase (0.36 mol O₂ per mol H₂O₂ supplied: Fig. 1, trace B) indicates that low concentrations of H₂O₂ were not rapidly metabolised by washed chloroplasts in the dark. Since both light and low concentrations of H_2O_2 are required to support O_2 evolution and H_2O_2 consumption by washed intact chloroplasts, this activity is hereafter referred to as (light plus H_2O_2)-dependent O_2 evolution.

In the dark, although the rate of O_2 evolution at H_2O_2 concentrations below 0.25 mM did not exceed 2 μ mol/mg Chl per h, the rate increased with the H_2O_2 concentration up to at least 1.6 mM. In the light, however, 0.1 mM H_2O_2 supported O_2 evolution at approx. 80% of the maximum rate. When corrected for activity in the dark, the optimum concentration of H_2O_2 for the light-dependent reaction was 0.1–0.4 mM; higher concentrations were inhibitory (Fig. 2). The concentration of

TABLE I
EFFECT OF A SERIES OF WASHES UPON SOME PROPERTIES OF ISOLATED CHLOROPLASTS

Chloroplasts were isolated (referred to as unwashed chloroplasts) and washed 1, 2, 3 or 4 times with 0.33 M sorbitol adjusted to pH 7 with 10 mM Hepes-KOH as described in Materials and Methods. The uncoupled rate of ferricyanide-dependent O₂ evolution was determined after osmotic shock [20].

Chloroplasts	Intactness (%)	Ferricyanide-dependent O_2 evolution $(\mu \text{mol/mg Chl per h})$	Azide-sensitive catalase activity $(\mu \text{ mol } O_2/\text{mg Chl per h})$
Unwashed	76	299	289
1 wash	78	331	60
2 washes	82	390	34
3 washes	78	307	33
4 washes	75	287	16

 $\rm H_2O_2$ supporting $0.5V_{\rm max}$ for the light-dependent reaction was estimated to be 25 μ M. DCMU (5 μ M) abolished (light plus $\rm H_2O_2$)-dependent $\rm O_2$ evolution and $\rm H_2O_2$ was not metabolised under these conditions. Experiments similar to those shown in Fig. 1 involving unwashed chloroplasts and azide (0.1 mM) to inhibit catalase were un-

satisfactory due to azide inhibition of (light plus H_2O_2)-dependent O_2 evolution. However, the latter reaction was less sensitive to azide than catalase activity (Fig. 3). Osmotically shocked chloroplasts (diluted 9-fold) supported O_2 evolution at a rate of 32 μ mol/mg Chl per h upon addition of 0.23 mM H_2O_2 but this ceased after the evolution of only

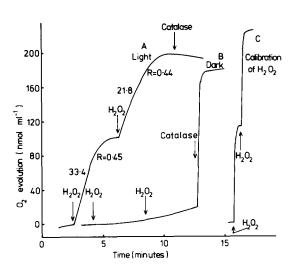


Fig. 1. Effect of $\rm H_2O_2$ on $\rm O_2$ evolution by washed chloroplasts (88% intact, washed four times) in (A) light and (B) dark. Values beside trace A denote the rate of $\rm O_2$ evolution in μ mol/mg Chl per h and R represents the ratio of $\rm O_2$ evolved: $\rm H_2O_2$ supplied for successive additions of 0.22 mM $\rm H_2O_2$. Reaction mixtures A and B contained 100 μ g Chl/ml. Catalase (220 U/ml) was added as shown. The concentration of individual additions of $\rm H_2O_2$ supplied in the experiment was determined polarographically by $\rm O_2$ evolution in the presence of 220 U/ml catalase (trace C).

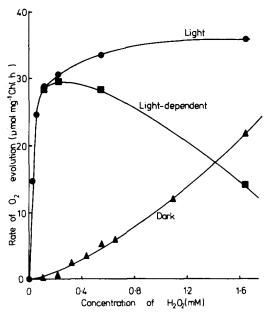


Fig. 2. Effect of concentration of H_2O_2 on the rate of O_2 evolution by washed chloroplasts (88% intact, washed four times) in the light (\bullet) and in the dark (\blacktriangle). All other conditions were as described for (light plus H_2O_2)-dependent O_2 evolution except that the concentrations of H_2O_2 were as specified. The light-dependent activity (\blacksquare) is also shown.

0.07 mol O_2 per mol H_2O_2 supplied; a further addition of 0.23 mM H_2O_2 did not initiate significant O_2 evolution.

Washed chloroplasts preincubated in the absence of H₂O₂ for 11 min in the light (Fig. 4, trace C) or in the dark (Fig. 4, trace B) exhibited (light plus H_2O_2)-dependent O_2 evolution when the appropriate conditions were subsequently applied; the rates were similar to those obtained by the standard procedure (Fig. 4, trace A). However, when the chloroplasts were preincubated in the dark in the presence of 0.11 mM H₂O₂, they failed to exhibit (light plus H2O2)-dependent O2 evolution upon illumination even when additional H₂O₂ was supplied (Fig. 4, trace D). Subsequent addition of catalase resulted in the production of 0.26 mol O_2 per mol H_2O_2 added, implying that H_2O_2 was not extensively metabolised. The data therefore demonstrate that some component of the mechanism involved in (light plus H_2O_2)-dependent O₂ evolution is sensitive to pretreatment with low concentrations of H₂O₂ under conditions in which H₂O₂ is not metabolised (e.g., dark in the absence of significant catalase activity).

Washed spinach chloroplasts contain endogenous pools of GSH and ascorbate which we have estimated to be approx. 10 and 33 mM, respec-

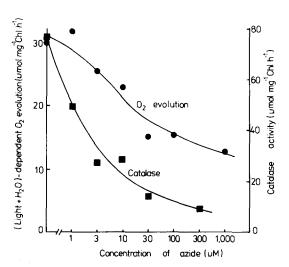


Fig. 3. Effect of concentration of azide on (light plus H_2O_2)-dependent O_2 evolution (\bullet) and O_2 evolution in the dark in the presence of 2.2 mM H_2O_2 (\blacksquare) by washed chloroplast preparations (89% intact).

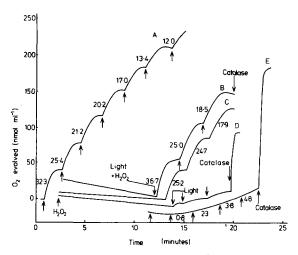


Fig. 4. Effect of pretreating chloroplasts (88% intact) in the light and dark, with and without 0.11 mM H₂O₂, on (light plus H₂O₂)-dependent O₂ evolution. Reaction mixtures A-E contained 100 μ g Chl/ml and 0.11 mM H_2O_2 was added at the times shown by the unlabelled arrows. A and E constitute illuminated and dark controls, respectively, in which H₂O₂ was added immediately. B was preincubated in the dark for 11 min prior to illumination and addition of H2O2. C is analogous to B but was preincubated in the light. D shows the effect of preincubating chloroplasts in the dark for 11 min in the presence of 0.11 mM H₂O₂ prior to illumination. The O₂ evolution associated with the addition of catalase (220 U/ml) to D (three additions of 0.11 mM H₂O₂) and E (five additions of 0.11 mM H₂O₂) demonstrate that H₂O₂ was not extensively metabolised in these treatments. Values beside the traces denote the rate of O₂ evolution in μmol/mg Chl per h.

tively, assuming a chloroplast volume of 26 μ l/mg Chl [22]. Thus, in incubation mixtures containing 100 μg Chl/ml the average concentrations of GSH and ascorbate were approx. 26 and 86 µM, respectively. When two additions of 0.2 mM H₂O₂ were supplied to washed chloroplasts in the dark, 100% of the GSH and approx. 80% of the ascorbate were oxidised (Fig. 5A). A single addition of H₂O₂ (0.2 mM) also decreased the GSH and ascorbate pools of illuminated chloroplasts but as the rate of O, evolution decreased and finally ceased, the concentrations of GSH and ascorbate increased; the GSH concentration increased to a value in excess of the initial GSH pool and ascorbate to a value somewhat less than the original. This sequence was repeated upon a further addition of 0.2 mM H₂O₂ (Fig. 5B).

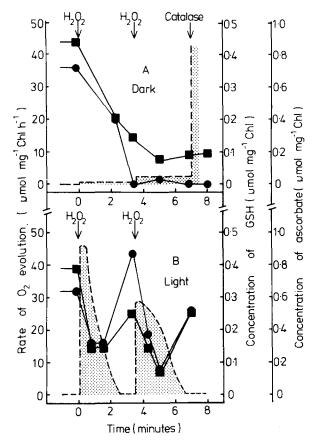


Fig. 5. Correlation between rate of O_2 evolution by intact washed chloroplasts (dotted curve) and the endogenous concentrations of GSH (\bullet) and ascorbate (\blacksquare) in (A) dark and (B) light in response to the addition of exogenous H_2O_2 . Reaction mixtures contained washed chloroplasts (87% intact, 100 μ g Chl/ml); H_2O_2 (0.23 mM) and catalase (220 U/ml) were added as shown. The maximum standard errors for determinations of GSH and ascorbate were 0.085 and 0.11 μ mol/mg Chl, respectively.

Discussion

Our results demonstrate that intact washed chloroplasts have the capacity to metabolise low concentrations of H_2O_2 (<0.4 mM) at rapid rates in the light but not in the dark with the concomitant evolution of O_2 . Since washed chloroplasts exhibit negligible catalase activity at the low concentrations of H_2O_2 (0.25 mM) employed in our studies but support H_2O_2 -dependent O_2 evolution in the light (Fig. 1), this implies that H_2O serves as the ultimate electron donor for light-dependent

reduction of H₂O₂ to H₂O:

$$H_2O_2 + H_2O \xrightarrow{h\nu} 2H_2O + \frac{1}{2}O_2$$

The sensitivity of both H_2O_2 consumption and H_2O_2 -dependent O_2 evolution to DCMU is consistent with this proposal and implies that the requirement for light involves Photosystems I and II.

The transitory decrease and subsequent increase in the endogenous GSH and ascorbate concentrations during (light plus H₂O₂)-dependent O₂ evolution is similar to that reported for ruptured pea chloroplasts in the presence of exogenous GSH and ascorbate [13]. In the light, the levels of the reduced forms of glutathione and ascorbate approach the initial values upon complete consumption of the added H₂O₂ but remain in their oxidised forms upon addition of H_2O_2 in the dark (Fig. 5). These perturbations are consistent with the proposed role of GSH/GSSG and ascorbate/ dehydroascorbate as intermediate electron carriers in the transfer of reducing equivalents from Photosystem I and NADPH to H₂O₂ [9,11,13]. These results in turn imply that the enzymes glutathione (oxidised) reductase, glutathione dehydrogenase and ascorbate peroxidase are associated with chloroplasts as reported previously [9-11] and, under these conditions, exhibit rates commensurate with the rate of (light plus H₂O₂)-dependent O₂ evolution. The high affinity of the reaction for H₂O₂ (Fig. 2) is in broad agreement with the $K_{\rm m}$ value of 45 μ M for H₂O₂ reported for spinach chloroplast ascorbate peroxidase [11].

The inhibition of (light plus H_2O_2)-dependent O_2 evolution by azide is consistent with the properties of ascorbate peroxidase [11,13] and previous studies of H_2O_2 metabolism in spinach chloroplasts in the presence of 1 mM azide [23]. However, (light plus H_2O_2)-dependent O_2 evolution was relatively less sensitive to azide than catalase activity, exhibiting only 50% inhibition at 0.1 mM azide. Impermeability of the chloroplast envelope to azide seems an unlikely explanation, since 0.1 mM azide was without significant effect upon (light plus H_2O_2)-dependent O_2 evolution by ruptured pea chloroplasts [13]. The abolition of (light plus H_2O_2)-dependent O_2 evolution upon osmotic

shock was assumed to be due to dilution of the endogenous pools of NADP(H), GSH/GSSG and ascorbate/dehydroascorbate associated with intact washed chloroplasts; shocked chloroplasts must be supplemented with these reagents to support (light plus H_2O_2)-dependent O_2 evolution [11,13].

The abolition of light-dependent H_2O_2 metabolism by pretreatment of chloroplasts in the dark in the presence of low concentrations of H_2O_2 (Fig. 5, trace B) is not understood. This raises the question as to whether light-dependent H_2O_2 metabolism is any more sensitive to inhibition by H_2O_2 than other forms of metabolism in chloroplasts and, if so, whether inhibition of the H_2O_2 reduction pathway could be causal in inhibiting other forms of metabolism.

The mechanism we describe, with its high absolute activity and high affinity for H₂O₂, would afford a mechanism for maintaining H₂O₂ in the chloroplasts of illuminated leaves at extremely low concentrations under steady-state conditions as has been suggested previously [23]. Since isolated chloroplasts readily metabolise exogenous H_2O_2 in the light, it is not impossible that illuminated chloroplasts might (also) function in the reduction of H₂O₂ produced at other sites in photosynthetic cells. The ability of chloroplasts to reduce H₂O₂ in the light further demonstrates the capacity of chloroplasts to utilise light-generated reducing equivalents in processes other than CO₂ assimilation [24]. The data presented here do not support the suggestion that the primary function of ascorbate peroxidase in chloroplasts is involved with the oxidation of excess NADPH in the dark [25].

References

- 1 Mehler, A.H. (1951) Arch. Biochim. Biophys. 33, 65-67
- 2 Allen, J.F. (1977) Curr. Adv. Plant Sci. 29, 459-469
- 3 Marsho, T.V., Behrens, P.W. and Radmer, R.J. (1979) Plant Physiol. 64, 656-659
- 4 Charles, S.A. and Halliwell, B. (1980) Biochem. J. 189, 373-376
- 5 Kaiser, W. (1976) Biochim. Biophys. Acta 440, 476-482
- 6 Stadtman, T.C. (1979) Adv. Enzymol. 48, 1-28
- 7 Jablonski, P.P. (1981) Ph.D. Thesis, La Trobe University, Victoria, Australia
- 8 Smith, J. and Shrift, A. (1979) Comp. Biochem. Physiol. 63B, 39-44
- 9 Foyer, C.H. and Halliwell, B. (1976) Planta 133, 21-25
- 10 Jablonski, P.P. and Anderson, J.W. (1981) Plant Physiol. 67, 1239–1244
- 11 Nakano, Y. and Asada, K. (1981) Plant Cell Physiol. 22, 867–880
- 12 Jablonski, P.P. and Anderson, J.W. (1978) Plant Physiol. 61, 221-225
- 13 Jablonski, P.P. and Anderson, J.W. (1982) Plant Physiol. 69, 1407-1413
- 14 Foyer, C.H., Rowell, J. and Walker, D.A. (1983) Planta 157, 239–244
- 15 Walker, D.A. (1980) Methods Enzymol. 69, 94-104
- 16 Slabas, A.R. and Walker, D.A. (1976) Biochem. J. 153, 613-619
- 17 Delieu, T. and Walker, D.A. (1972) New Phytol. 71, 201-225
- 18 Owens, C.W. and Belcher, R.V. (1965) Biochem. J. 94, 705-711
- 19 Wintermans, J.F.G.M. and DeMots, A. (1965) Biochim. Biophys. Acta 109, 448-453
- 20 Lilley, R. McC., Fitzgerald, M.P., Rienits, K.G. and Walker, D.A. (1975) New Phytol. 75, 1-10
- 21 Halliwell, B. (1974) New Phytol. 73, 1075-1086
- 22 Heldt, H.W. and Sauer, F. (1971) Biochim. Biophys. Acta 234, 83-91
- 23 Nakano, Y. and Asada, K. (1980) Plant Cell Physiol. 21, 1295-1307
- 24 Anderson, J.W. (1982) in The Biochemistry of Plants, Vol. 8, (Hatch, M.D. and Boardman, N.K., eds.), pp. 473-500, Academic Press, New York
- 25 Kow, Y.W., Smyth, D.A. and Gibbs, M. (1982) Plant Physiol. 69, 72-76